6 ECTS credits
160 h study time

Offer 1 with catalog number 1004220BNR for all students in the 1st and 2nd semester at a (B) Bachelor - advanced level.

Semester
1st and 2nd semester
Enrollment based on exam contract
Impossible
Grading method
Grading (scale from 0 to 20)
Can retake in second session
Yes
Enrollment Requirements
Om te kunnen inschrijven voor Systeem- en controletheorie (6 SP) moet men geslaagd zijn voor Lineaire algebra: stelsels, matrices en afbeeldingen en ingeschreven of geslaagd zijn voor Complexe analyse: residurekening en integraaltransformaties ofwel ingeschreven zijn in het Voorbereidingsprogramma tot de master in de fotonica. Bachelorstudenten ingenieurswetenschappen, afstudeerrichting elektronica en informatietechnologie (generiek programma en profiel computerwetenschappen) moeten tevens ingeschreven of geslaagd zijn voor het technologieproject Informatie en Communicatietechnologie en voor 1 van de 3 overige technologieprojecten.
Taught in
Dutch
Faculty
Faculty of Engineering
Department
Electricity
Educational team
Rik PINTELON
Yves ROLAIN (course titular)
Activities and contact hours
42 contact hours Lecture
24 contact hours Seminar, Exercises or Practicals
Course Content

The course consists of two parts.
Part 1: Introduction to system theory. Describing the behaviour of linear dynamic systems (continuous time, discrete time) in the time domain and in the frequency domain. It is also shown how these descriptions can be combined with information from measurements (sampling, discrete Fourier transform, reconstruction).

Part 2: analysis (calculus with block diagrams, state equations, time response frequency response, root locus, Nyquis diagram, Bode plot) and design of feedback controllers (state feedback controllers, compensation regulators such as PD, lead, PI, lag, and PID). The course ends with a number of practical examples such as de operational amplifier, de voltageregulator, and the compact disc player; and with an introduction to digital and nonlinear control.

Course material
Course text (Required) : Systeem- en controletheorie - deel II: controletheorie, Deel II: controletheorie, Pintelon, VUB, 2220170003795, 2017
Course text (Required) : Inleiding tot de systeemtheorie, Deel 1: systeemtheorie, Rolain, VUB, 2220170003665, 2017
Additional info
Bibliography :
Brigham E. (1974). The fast Fourier transform, Prentice-Hall ;
Cadzow J.A. and H.F. Van Landingham (1985). Signals, systems and Transforms, Prentice hall ;
Kailath T. (1980). Linear Systems, Johan Wiley ;
Meade M.L. and C.R. Dillon (1986), Signals and Systems, models and behaviour, Van Nostrand Reinhold ;
Oppenheim A., A.S. Willsky and I.T. Young (1983). Signals and Systems, Prentice Hall ;
Sinha K. (1991), Linear Systems, John Wiley.

Books on control theorie

Dutton, K., S. Thompson, and B. Barraclough (1998). The Art of Control Engineering. Addison Wesley: Harlow (UK).
Goodwin, G. C., S. F. Graebe, and M. E. Salgado (2001). Control System Design. Prentice-Hall: Upper Saddle River, New Jersey (USA).
Lewis, F. L. (1992). Applied Optimal Control and Estimation. Prentice-Hall: Upper Saddle River, New Jersey (USA).
Nise, N. S. (2002). Regeltechniek voor Technici. John Wiley & Sons: New York (USA).
Franklin, G. F., J. D. Powell, and A. Emami-Naeini (2002). Feedback Control of Dynamic Systems. Prentice-Hall: Upper Saddle River, New Jersey (USA).


Complementary study material:
Control theory

Digital control
Jacquot, R. G. (1995). Modern Digital Control Systems. Marcel Dekker Inc.: New York (USA).
Söderström, T. (1994). Discrete-time Stochastic Systems Estimation and Control. Prentice-Hall: Hemel Hempstead (UK).

PID controllers
Åström, K. J., and T. Hägglund (1995). PID Controllers: Theory, Design, and Tuning. Research Triangle Park, NC, ISA.
Panagopoulous, H., K. Åström, and T. Hägglund (1999). Design of PID controllers based on non-convex optimization, Proceedings of American Control Conference, San Diego, California (USA), pp. 3858-3862.

Neuro-fuzzy control
Miller, W. T., R. S. Sutton, and P. J. Werbos (1995). Neural Networks for Control. MIT Press: Cambridge (USA).
Passino, K. M., and S. Yurkovitch (1998). Fuzzy Control. Addison-Wesley: Menlo Park (USA).

Non-linear control
Isidori, A. (1995). Nonlinear Control Systems. Springer-Verlag: Lomdon (UK).
Glad, T., and L. Ljung (2000). Control Theory: Multivariable and Nonlinear Systems. Taylor & Francis: London (UK).
Learning Outcomes

General competencies

- Aims and objectives :

Understanding the behaviour of linear dynamic systems and verify this insight by experiments.
Knowing the basic aspects of control theory

- Exam requirements :
(1) understanding the behaviour of linear dynamic systems
(2) understanding the relations between time/frequency domain
(3) understanding the sampling process and being able to use discrete Fourier transforms
(4) understanding the basic concepts of control theory
(5) analysis and design of a feeback controller

THIS COURSE IS NOT TAUGHT IN ENGLISH

This course contributes to the following programme outcomes of the Bachelor in Engineering Sciences:

The Bachelor in Engineering Sciences has a broad fundamental knowledge and understanding of
1. scientific principles and methodology of exact sciences with the specificity of their application to engineering;
3. integrated design methods according to customer and user needs with the ability to apply and integrate knowledge and understanding of other engineering disciplines to support the own specialisation engineering one;
4. fundamental, basic methods and theories to schematize and model problems or processes.

The Bachelor in Engineering Sciences can
6. monitor, interpret and apply the results of analysis and modelling in order to bring about continuous improvement;
8. apply an horizontal broadening and vertical deepening of the discipline within a continuously changing society and industrial context, in a multi-disciplinary environment;
12. reason in a logical, abstract and critical way;

The Bachelor in Engineering Sciences has
16. a creative, problem-solving, result-driven and evidence-based attitude, aiming at innovation;
 

Grading

The final grade is composed based on the following categories:
Other Exam determines 100% of the final mark.

Within the Other Exam category, the following assignments need to be completed:

  • Oral exams incl. lab & exerc. with a relative weight of 1 which comprises 100% of the final mark.

    Note: Het examen over het deel systeemtheorie + bijhorende oefeningen wordt afgenomen in de zittijd van het 1e semester. Let wel: afwezigheid op één of meer van de drie onderdelen resulteert in een afwezigheid van het ganse opleidingsonderdeel.

Additional info regarding evaluation
Oral exam, closed book.

Emphasis on understanding, reproducing is not enough

System theory 1/3
Control theory 1/3
Labo+exercises 1/3 (remark: 1/3 of the score on this part can be set by evaluations during the sessions).

Exam on system theory + related exercises: 1st semester
Exam on control theory + related labo: 2nd semester

Important note: absence at one or more parts of the exam results in an "absence" evaluation of the whole course

Academic context

This offer is part of the following study plans:
Bachelor of Engineering: Electronics and Information Technology (only offered in Dutch)
Bachelor of Engineering: Electronics and Information Technology Profile Profile Computer Science (only offered in Dutch)
Bachelor of Engineering: verkort traject elektronica en informatietechnologie na vooropleiding industriële wetenschappen (only offered in Dutch)
Bachelor of Physics and Astronomy: Default track (only offered in Dutch)
Master of Physics and Astronomy: Minor Economy and Business
Preparatory Programme Master of Science in Photonics Engineering: Standaard traject (only offered in Dutch)
Preparatory Programme European Master of Science in Photonics: Standaard traject (only offered in Dutch)