4 ECTS credits
115 h study time

Offer 1 with catalog number 1004216BNR for all students in the 2nd semester at a (B) Bachelor - advanced level.

Semester
2nd semester
Enrollment based on exam contract
Impossible
Grading method
Grading (scale from 0 to 20)
Can retake in second session
Yes
Enrollment Requirements
Om te kunnen inschrijven voor Elektronische componenten 1 moet men ingeschreven of geslaagd zijn voor Vaste stof en stralingsfysica OF ingeschreven zijn in het Voorbereidingsprogramma tot de master in de fotonica. Bachelorstudenten ingenieurswetenschappen, afstudeerrichting elektronica en informatietechnologie (generiek programma) moeten tevens ingeschreven of geslaagd zijn voor het technologieproject Informatie en Communicatietechnologie en voor 1 van de 3 overige technologieprojecten.
Taught in
Dutch
Faculty
Faculteit Ingenieurswetenschappen
Department
Electronics and Informatics
Educational team
Nadine Collaert (course titular)
Activities and contact hours
30 contact hours Lecture
18 contact hours Seminar, Exercises or Practicals
Course Content

- Short introduction to semiconductor technology
- development of the energy band model for semiconductors
- description of semiconductors in equilibrium and quasi-equilibrium (Fermi level, effective mass of carriers, mobility, conductivity)
- effects of electric fields; accumulation, depletion, inversion
-physics of passive devices : metal-semiconductor contact (Ohmic contact, Schottky diode),  p-n junction (tunnel diode, diode)
- physics of active devices : field effect transistor and bipolar transistor

The lab sessions will be devoted to the understanding of the operation principle of devices, a number of them being characterized. The student will try to identify an unknown component by using electrical measurement.

Course material
Digital course material (Required) : Cursusnota's zijn beschikbaar op Canvas en bij de vakgroep ETRO (Elektronische componenten I), Canvas en bij de vakgroep ETRO
Handbook (Recommended) : An introduction to semiconductor technology, D.V. Morgan & K. Board, 2de, BIB, 9780471924784, 1990
Handbook (Recommended) : Semiconductor manufacturing technology, M. Quirk & J. Serda, BIB, 9780130815200, 2001
Handbook (Recommended) : Semiconductor physics and devices, Donald A. Neamen, 4de, McGraw Hill, 9780071089029, 2011
Handbook (Recommended) : Understanding semiconductor devices, Sima Dimitrijev, BIB, 9780195131864, 1992
Handbook (Recommended) : Semiconductor Devices, Kanaan Kano, 3de, BIB, 9780470537947, 1998
Handbook (Recommended) : MOS Physics and Technology, E.H. Nicollian & J.R.Brews, John Wiley, 9780471430797, 2002
Handbook (Recommended) : Physics of semiconductor devices, Simon Sze, 3de, John Wiley, 9780471143239, 2006
Handbook (Recommended) : Electrons in solids, An introductory survey, Richard H. Bube, 3de, Academic Press, 9780121385538, 1992
Handbook (Recommended) : Semiconductor Physics, An Introduction, Karlheinz Seeger, 9de, Springer Verlag, 9783642060236, 2010
Handbook (Recommended) : VLSI Technology, Simon Sze, BIB, 9780070627352, 1988
Additional info

Lecture notes are available in Dutch (Elektronische Componenten I)on Poincaré and at the ETRO department.

 

Learning Outcomes

General competencies

To develop an intuition regarding the behaviour of semiconductors and semiconductor devices with the help of the energy band model : to understand the effects of electric fields and voltages on semiconductors. To come to a thorough understanding of the physics of semiconductor devices. By starting from first principles, this course intends to allow the student at some point later in his career to understand and use semiconductor devices that are inexistent or still under development today.

This course contributes to the following programme outcomes of the Bachelor in Engineering Sciences:

The Bachelor in Engineering Sciences has a broad fundamental knowledge and understanding of
1. scientific principles and methodology of exact sciences with the specificity of their application to engineering;
4. fundamental, basic methods and theories to schematize and model problems or processes.

The Bachelor in Engineering Sciences can
7. apply quantitative methods and computer software relevant to the engineering discipline in order to solve engineering problems;
10. correctly report on design results in the form of a technical report or in the form of a paper;
12. reason in a logical, abstract and critical way;

The Bachelor in Engineering Sciences has
17. a critical attitude towards one’s own results and those of others;
18. acquired the tools for knowledge collection towards life-long learning;

 

Grading

The final grade is composed based on the following categories:
Oral Exam determines 67% of the final mark.
PRAC Practical Assignment determines 33% of the final mark.

Within the Oral Exam category, the following assignments need to be completed:

  • Written theory exam with a relative weight of 1 which comprises 67% of the final mark.

    Note: Een mondelinge gesloten boek ondervraging over de theorie waarbij de aandacht niet enkel gaat naar het reproduceren van de theoretische inhoud van de cursus, maar ook gepeild wordt naar een diepere kennis via confrontatie met bvb. niet in de cursus behandelde componenten. De student krijgt in principe twee vragen: een kwantitatieve en een kwalitatieve vraag waarbij vooral bij de laatste inzicht centraal staat. Hij mag zijn antwoorden eerst schriftelijk voorbereiden. Daarna volgt de eigenlijke mondelinge ondervraging en een discussie over aanverwante onderwerpen.

Within the PRAC Practical Assignment category, the following assignments need to be completed:

  • Exercises exam with a relative weight of 1 which comprises 33% of the final mark.

    Note: Een schriftelijk verslag over de practica, aangevuld met een mondelinge ondervraging over de inhoud van dit verslag

Additional info regarding evaluation

1. An oral closed book examination concerning the physics of semiconductor devices. In principle, the student gets two questions: one quantitative and one qualitative. Especially for the second question the focus is on understanding. The student is given the opportunity to first prepare his answers on paper. Then follows the oral examination and a discussion on related topics. These can include devices that are not explicitly treated in the course.

2. A written report on the activities during the lab sessions, complemented by an oral examination on the contents of the student's report.

The examination on the theoretical part of the course accounts for 2/3 of the final mark; the report and the examination about the lab sessions account for 1/3.

Allowed unsatisfactory mark
The supplementary Teaching and Examination Regulations of your faculty stipulate whether an allowed unsatisfactory mark for this programme unit is permitted.

Academic context

This offer is part of the following study plans:
Bachelor of Engineering: Electronics and Information Technology (only offered in Dutch)
Bachelor of Physics and Astronomy: Default track (only offered in Dutch)
Master of Physics and Astronomy: Minor Economy and Business
Preparatory Programme Master of Science in Photonics Engineering: Standaard traject (only offered in Dutch)
Preparatory Programme Master of Science in Photonics Engineering: Standaard traject