3 ECTS credits
90 u studietijd
Aanbieding 1 met studiegidsnummer 4021670FNR voor alle studenten in het 2e semester met een gespecialiseerd master niveau.
Position of the course
In a report of the World Health Organization from 2006, neurological disorders contribute to 6.3% of the global burden of disease. This report estimates that the number of healthy life years lost because of neurological disorders will increase from 92 million in 2005 to 103 million in 2030, approximately a 12% increase mainly due to the aging population. Hence, there is still an important interest in neuroscience research to study the brain under normal and pathological conditions, even though, therapeutic successes have been few. Especially translational aims have been a remarkable engine for driving research investment in the neurosciences. Translational neuroscience is defined as:
1. Experimental non-human and non-clinical (basic science) studies conducted with the specific intent to discover mechanisms, biomarkers, pathogenesis or treatments of nervous system disorders; and
2. Clinical studies that provide a foundation for developing, or that directly test, novel therapeutic strategies for humans with nervous system disorders.
In other words, translational neuroscience will bring basic preclinical knowledge (from the bench) to clinical practice (to the bedside) to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders. Thus, translational neuroscience is the process of using all technological advances to bring novel therapies with measurable outcomes to patients with neurological diseases. In this course, emphasis will be on translational neuroimaging, where multiple imaging techniques are used to bridge the gap between preclinical research and clinic practice. These imaging methods need to fulfil certain criteria such as being non-invasive (MRI), or at least minimal invasive (PET), and providing quantitative information to simplify the process of translating preclinical findings into the clinic.
Contents
· The importance of small animal imaging
· Multimodal neuroimaging
· Setting up a small animal experiment
· Animal models
· Opto-genetics
· Chemo-genetics
· Computing for the characterization of neurodegenerative disorders
· Examples of translational neuroscience experiments at our university
Keywords
· Animal models
· Neuroimaging
· Preclinical studies
· Clinical trials
Initial competences
· Physical principled of different imaging techniques, including SPECT, PET, CT, MRI and EEG.
· Critical evaluation of the advantages and disadvantages of the different neuroimaging techniques
· Capability to setup a preclinical imaging study
· Capability to understand the principles of opto-genetics
· Capability to understand the principles of chemo-genetics
· Critical evaluation of different animal models available for preclinical research
· Critical evaluation of the difficulties of image quantification in translational neuroscience
De beoordeling bestaat uit volgende opdrachtcategorieën:
Examen Andere bepaalt 100% van het eindcijfer
Binnen de categorie Examen Andere dient men volgende opdrachten af te werken:
Nihil.
Deze aanbieding maakt deel uit van de volgende studieplannen:
Master in de ingenieurswetenschappen: biomedische ingenieurstechnieken: Standaard traject
Master of Biomedical Engineering: Startplan (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Radiation Physics (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Biomechanics and Biomaterials (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Sensors and Medical Devices (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Neuro-Engineering (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Standaard traject (NIEUW) (enkel aangeboden in het Engels)
Master of Biomedical Engineering: Profiel Artificial intelligence and Digital Health (enkel aangeboden in het Engels)